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Element Pattern of an Axial Dipole in a C0 .4indrical
Phased Array, Part 1: Theory

1. INTRODUCTION

Circular cylindrical antenna arrays are of interest for radar and ,ommunica-
tion applications because of the uniformity of their circumferential radiation char-
acteristics. Some cylindrical array applications require a high degree of per-

formance antenna characteriatics such as preciv-2 beam pointing, accurate angle
tracking, ultralow sidelobes. and wide bandwidth. To achieve the associated tight
array illumination tolerances, mutual coupling between the radiating elements

must be accurately accounted for.
Surveys of the state-of-the-art of cylindrical phased arrays and their design

considerations are given. 1.2 However, most of the cited bibliographies deal with
aperture arrays. On the other hand, a dipole element is an attractive choice for
an array radiator due to its simplicity of manufacture. reasonably wide bandwidth,
and polarization purity.

These factors motivated the two-phase effort: theoretical and experimental.

(Received for publication 31 January 1984)
1. Hessel. A. (1972) Mutual coupling effects in circular arrays on cylindrical

surfaces - Aperture design implications and analysis, In Phase Array An-
tennas., A.A. Oliner and G. H. Knittel, Eds., Artech House. Dedham, Mass.

2. Mailloux. R. J. (1982) Phased array theorj and technology, Proc. IEEE,
70(No. 3).



In the first phase, cylindrical. stacked, ring-antenna arrays of uniformly spaced
axial dipoles wer ne stigated to establish the mutually covupled elemeat pt-tern
characteristics. A detailed account ot this invesigation Is provided In Part 1 of
this report and has been briefly reported. 3 The second phase of the study con-
sisted of experiments augmenting and supporting the theoretical phase and Is pre-
sented in Part 2.

In the theoretical ayalyis, a modal approach " it employed that utilizes a unit
cell method similar to that reported for an array of aperture elemnefts In a circu-
lar cylindrical ground. The m~oWa approach vas chosen for several reasons.
Asymptotic treatmentas5 6 may be well suit*4 to modeling arrays of arbitrary con-
formal shapes after their numerical validiy has been ascertained by -compario
with exact solutions of relevant canonical problems. The modal technique avoids
the uncertain accuracy of the asyuitctia approaches and has the following advau-
tape,: (1) In principle, it furnishes an exact sohition subject only to truncation er-
rors that can be estim-ated; (2) It Is uniformly valid in all spatial regions, whereas
asymptotic formulations employ different reprsentations in various angular do-
mains and require transition functions to connect the results smoothlys (3) It has
additional flexibility in that It provides animers for both rectangular and Isosceles
triangular array lattice*, the latter after a minor modification; and (4) It yields
both the realised gain and element pattern phase.

2. ANALYSIS FOR RECTANGULAR LATTICE

2.1 Armay Model

The cylindrical array model under consideration, shown In Figure 1, consists
of an infinite numnber of equispaced stacked rings of axial dipoles. The rings, of
radius po. contain N equispace~d identical dipoles each located coaxially a dista~tce
a above an infinite, perfectly conducting, circular cylindrical surface of radius a.

3. Herper. J. C. . Hessel, A.. Mandarmno, C., and Tomasic,, B. (1980) Perform
ance of a dipole element in a cylindrical array - A modal approach. IEEE
Antennas Propag. Symp. Dig., University of L~aval, PQ, Canada, lSeM-5.

4. Sureau. J. C. . and liessel. A. (197 1) Element pattern for circular arrays Of
waveguide-fed axial slits on large conducting cylinders. IEEEC Trans. Anten-
nas Propag., AP-19. 64-76.

5. Eichmann, G.. n nd Lee. K. S. (1978) Analysis of conformal scang dipole
arrays Antennas Propag. Symp. Dig.,. University of Maryland. Washing-
ton, D.C..

6. Indenbom. M. V, , and Fillppov, V, S. (1978) An asymptotic solution of the
problem of mutual coupling between the radiators of a convex cylindrical ar-
ray antenne, Radio Eng. Electron Phys.. 23(No. 1). 42-49.
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Figure 1. Geometry of the Circular Cylindrical Array of Dipoles in a
Rectangular Lattice

The dipoles have a length L, narrow width w, and negligible radial thickness.

Their central gaps of length h are excited through identical matching networks via

respective transverse electromagnetic (TEM) transmission lines fed from matched

generators. For the case of single-element excitation, all but one.of the gerera-

tors are short-circuited. A typical wedge-shaped unit cell, of axial dimension d

and width b : 2 7rP 0 /IJ .t the dipole location, is seen in Figure 2, which shows a

dipole without its feee.

3



2 w

Figure 2. Unit Cell Geometry of a Cylindrical
Dipole Array

2.2 Aetive Dipole Current

The performance of a singly excited dipole in a match-terminoted ary etwi-
ronment is determined by superposition of fields generated by the various discrete.
independent azimuthal phase sequence excitations, as well as by those of the con,,

tinuous spectrum type, the latter correspondits to uniform-amplitude, Progres-
sive-phase axial beam steering. A combination of one of each kind constitutes an
active cylindrical array excitation.

As a first step toward analysis of a free-excited array. one considers its
forced active excitation. The generic boundary value problem In th$V case redu9qa
to that of evaluation of fields radiated by a dipole In a radial unit tell with phase.
shift walls and excited by a prescribed gap voltage. Such analysis leads to the de-
termination of the unmatched, active dipole gap-impedance as a function of clrum-

ferential and axial phasing, frequency, and geometry. With this inform1atio, an
appropriate matching network may be configured and the element patteorn evalu.

ated.

To begin with, one observes that. for w/) < 1, the usual assuptijon of
strictly axial dipole currents should yield a good approximation to the desired di'
pole performance. As a consequence, all fields may be derived from a single

axial component of a vector potential A.. The treatment is facilitated by Introduc-
ing a unit cell Green's function G(r, rP; v. kz 0 ) which represents, to within a con-

stant factor p 0. the vector potential due to an axial, electric point eowieot element
located at r = r in a radial unit cell. Here, V(P 0, 1,..., N - 1) denotes the

4



circumferential vth phase sequence excitation with a uniform unity amplitude and

a paiase delay once around the array of 2 irv rad. The argument kz 0 indicates that
the progressive phase delay between the neighboring elements in any axial column

of the active array is k 0 d.

By linearity, the expression for the vector potential in a unit cell due to the

dipole surface current density K may be written in the form

Az(tv.kz0 ) P=J G(.,rC;.k,,) K(r') dS'

where r (P. b, z) and S is the dipole surface. Here, G satisfies

V 2 G+k 2 6: -G (-). k 27r (2a)

and is subject to the following boundary conditions:

G(a, q6. z; r') = 0 (2b)

radiation condition for P -• - (2c)

two Floquet conditions:

G.I.Z) Q= p G(p.S ,Zf (2d) -4

G (P-0d -= -jkd G(p.o,--d (2e)

2 2

For e jct time dependence, the various field components are

jw /2 2A
c -2-0 + k2Az) (3a)

k2 (a a z

Joi a2AR (3c)
P ap C1 Az

H • = . . . . (3 c )

From Eqs. (3a), (3b), and (1), it is evident, in view of Eq. (2b), that Ez and Eo

vanish at p a. Also. from Eqs. (1), (2a), and (3c), one finds that

5J



H- (p*. HO (p;. .z) 6 K(z2.). (4)

Finally, to satisfy Eqs. (2d) and (2e), G is expanded in terms of a comvilete. ortho-

normal Floquet basis

4• ,(•.z) = I ,-j(f* + kz) (8)

where PM = v+nrN, (va 0, 1,..,, N - l;m =0, *1,...)andkzn*k z0+21rn/d.

(n a.01. ... ); Setting

G(!,r';v,k,0 ) = 1 gmn(P-P'v.k) 4ýmn(nz) 44n (•') (6a)

one finds from Eq. (2a) that the radrl- Green's functions g mn(P. P') obey

1d darmn ) + (n' )mn * (P--p) (8b)
"P'dp dp p p

To satisfy Eq. (2b). one requires gmn(a, p A) = 0, and to insure Eq. (2c),

g n(p. p`) must have the form of an outgoing wave, or decay as p-., With
square root choice Re [kn] - Re [(k( zn ,2 > 0. and-Im(k. 0. the solu-
tion for gmn is

2J (P-0 W" (ivnp>) Z,, (KnP<) (Ta)

with

J ,(kXn)
Zm (Knp<) Jv. (KnP<) H '( (KICP<) (7b)

and P> (<) * max (min) (P. P ). The J v and denote Bessel functions of the

first kind and Hankel functions of the second 1cind, both of order v
The forced dipole excitation implies a prescribed gap voltage V and the asso-

ciated gap electric field E - E such that Vg -E h.
The boundary conditions on the dipole surface, E3 a 0 on the dipole arms and

Ez E in the gap, lead via Eqs. (1) and (3a) to a linear integral equation of the
first kind for the unknown dipole current density (assumed to also flow through the
gap):



d on dipole arms (8a)

•K = (r') K(£) dS: E Inthegap

where

A "wM ( +. ÷k 2 ) G(Cr') • (8b)
-k'2

The integral Eq. (8a) is solved approximately via Galerkin's procedure by first

expanding K(r ) in the form

KCq) = q- q W(,z) (9)

in terms of a finite set of iinearly independent basis functions q. such that
'q

vrq(,O'* z') a 0 for I> w/2Po. I e1> L/12. r(', =Z) = ;Pq(zi) for I'< w/2Po,
=qqIz < L/2 and Wq(q6% L/2) = lrq(¢,0 -L/2) 0. where we have assumed a uniform

current density across the dipcle's narrow dimension. Using Eq. (ria) in Eq. (8a).

one has. in operator form,

C Cq q E~q:E PhPw (0

qul

where Ph = Ph(z') and Pw = Pw() represent, respectively, a unit pulse of width

h centered at zý = 0. and of width w centered at " = 0. Relation (10) Is enforced
by taking its moments with each of the sjq. This procedure yields the desired set

of linear. inhomogeneous equations for the unknown set of c q that is,

a
q= Cq (_-•p.•_'q) = Eg (1, Phw) ( P 1, 2.... P=Q). (11)

The inner (scalar) product is (f. I) defined by

w/2po L/2

(f.,g) d4 f f(~z) gA dz (12)

-w/2Po -L/a

Explicitly, Eq. (11) reads

" r" kp Q 2 H(21 (K n (K n P o) ()p ,
I - - I (Q)h v,3) m n ~T Z2 q=1 m.n=-a.* , Lml ~m~~l~~ I' 1 m !q''n

=Eg (!'p. PhPw) (13)

7



w~tb4~U(~0 '0 ) 120wg. Choosing

sin + (4-L) q 1.2-A. II a .tl 11e
qL 2 22p.

one finde

*m wlrL C

where

VWMW

IvMW

2Pqj

Furthermore,

where NI .:~dOt$ alp E- (21+ j ~da

2.L

in-homogeneous equations for the datewrir-inatiion of the unknownt cM*IeT etwiett 0'-

pan~sioný coefficients:

I Apq( Op. (p OW ~ )

where

8-



-.q Ht~ -n Po) Za, Icapa) $8 Cap C*n (18b)

and

q Nk ir% . (16c
S4dV2

2.3 Active Gap-Impedance

Once the dipole current density K(W) has been arrived at. the active gap-im-

pedance is determined via

Vo -Egh
Z-(-.k ) (17)

h JK(z) dz

-h/2

where(I >denotes the average gap current. Substituting Eq. (10a) into Eq. (17)

using Eq. (16c). one has

Z9f(.km) = Rg(v.kw) +j X9 (P. kn) : Nw2 L'k (18)

4d 1 (qW) Bq

2.4 Matching Network and Reflection Coefficient

For a good radiation efficiency, an identical network is incorporated in each

TEM feed-line to match the dipole impedance Z for a selected pair of values of V

and k5 0 . This lossless reciprocal two-port network is characterized by its scat-

tering matrix ao It is defined between the reference planes on the input and output

transmission lines with characteristic impedances Z 1 and Z 2 and is illustrated in

Figure 3. Three specific forms of matching networks including derivation of re-

spective S-parameters are discussed in Appendix D.

With the aid of Figure 3, one can determine the active reflection coefficient F 1

at the input to the matching network to be (see Section 2. Appendix D)

Sr" ko) =S1 -. 1 f 2 (v-k,,) (1 9a)
I -S.2 r 2 (v.ko)

where A = 5 1 1 S2 2 - 12S21,

9



['2(V.k~j - F (P,. k,,) -I% (19b)

and

ZG(a' kin) - (Z9r'o(• •1.Zq(v. kn) +"Za

is the unmatched, active gap reflection coefficient. In Eq. (19b), 12 and A2 dO-

note the propagation constant and the length of the output transmission line.

The voltage Vg across the gap is given by Xq. (W14) as

V9 (P, ko) Sa 1[1 + 17', 1. It *-ats v .

I -a II aL 0... k"g

Figure 3. Equivalent Network for a siple 71
Element in a Cylindrical Array

2.5 Active Array Fields

From Eqs. (3a). (1). (8a), and (Tb). one finds ftbi P > P0 the *AIml 0.O-6d10tt

of the electric field of the active aOray

E , Iv. kto) Ci k -x'tK m:
n• -O to) s!

Utilizing Eqs. (14b), (15d), (19) mnd the relations 14 2w/a, b: cto' 194i 41)

can be cast into the form

Ex (Y. kt)• i t. I. it.) "It1*.# (2-914•lil

IAM.n=m o

10
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where the active tO smission 0oeoficient is

-L vie Vj' (K"PO) 8um I IN4C4 (22b)

2.6 Element Patter

In view of the identity

69atlclo = d ~l, * -indt dk.l to-. ... Nl (213a)

21r(tNO. 1.. )

where dos and t denote the Kronecker deltas, the expression for El:) due to the

singly excited (a - 0, t 0) element becomes

N.1.=

jw/d

Transforming the Integration variables k., ka 0 + 2wn/dl ks, one finds

•el) (It) Vi ,6 --

TreeN- avk) a ,
-e p V 1 " M

I f T. Non OpC)r' dk (2.

where x : (k _ - k2 ) 1/2 and where the Floquet relation Tmn ( P.ks) Tm,

(Y. k zn) has been invoked. The sum over the index n in Eq. (24) may be turther

converted into an Infinite integral so that

N-1--

E.(*. (d- z 1p VMP T,,. (V~k, (KP) 0* dk. (25)

Using the first term ot the large-argument asymptotic expansion for HP M ""),

the far field becomes

11
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£Ve s **i-f (Hal

with

Imr~~z =T.ol,kj) •"WP+'M1dd (24b)

The inategral in Eq. (26b) It *gvlated by te * taiUROry7 Phas metod. Set I ks
I k coo u. P a r sin 0 * a ' coe w , where 0tn me*mued from ta cYUNdtr eas.

one may write

cp + kt 'kr ooe (u- (el)

which results in a relevant sad.le POAM U(S) #..A o. esq.... y

yIeld.

From Eqs, (26t). (Rib), and 08). one has

where

Sterm It J. .18 , Ie) ota k 4•

A turns out that the lowest order terra of # 0 (1/v), s m ft R
tribution to tkhs far field may be n-witted, and. consequently. E# Conetftutea the
entire far electric field due to a singly excited dipole element in a mateh-termi-
nated array environment. Th'he realizld element gain pattern

12
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defined with respect to the available power P ine Vine 2/ZI may now be written

an

G')C (0.0) a 4r1 - I FIG..) (30b)

Denoting the complex field element pattern by

0 a. F(0) (31a)

Eq. (29a) can be expressed in the form

O(6)(r,9,$) V. gem to.) (31b)

& ANALYSIS FOR ISOSCELES TRIANGULAR LATtI

3.1 Array Model

The dipole* are now arranged In an isosctles tman&W lattice is shown In

Fgur4e 4. This lattice may be generated from a rectangular one, for example, by

displacing every other ring by wIN rad in the angular direction. The location of
the array elements on a cylindrical surface of radius #0 Is defined by the skewed
curvilinear basic vectors (see Figure 4)

-Pst a S -P + tP2- " (a a 0 , . .. N - 1: t a 0,Os.. ) (32)

where t indicates the ring and a the element number in it. The center of the
singly excited element (a a 0, t a 0) is located at (p0., £ 0, s a 0). The extent of
a wedge-shaped untt cell of rectangular cross section is 2w/N x 2d as indicated in

Figure 4.

3.2 Active Gap-Impedance and Reflection Coefficient

The analysis exploits the previously obtained results for a rectangular gridgeometry. In particular, the expansion of the unit cell Green's function as given

in Eq. (Ba) also applies here with the proviso that the double sum iF lices are con-
strained to (m + n) of even parity as demonstrated in Appendix A. Consequently.
the relevant expressions for active Impedances and reflection coefficients in an

13



!I

x;2B1~~ 91 moo~

Figure 4 Geomtetry of the Circular CyUndrical Array of Dipoles In s
riar Jar LAttice

isosceles triangular lattice can be simply inferred from the solutioa for th& cor-

responding rectangular grid array by restricting the summation Im Eq. (SM) to

(M + n) even. With this proviso implementied In Eq. 11Ob), the system f Uinar

eqvsations (16a) is also valid for isosceles tMan~uLar lattices. Tits. with this

mbdiflcation, the relations of Sections 2. 3 and 2. 4 pply to cytlIried dipole ar-

rays with isosceles triangular lattices.

14



&3 Eleemat Pattern

A single (i u 0, t s 0) array element excitation in an isosceles triangular lat-
tiee of Figure 4 can be expressed In terms of an excitation vector A -s # tot
(s0o 1s...t* N - 1 t0o *Is... ). In Appendix B. 'ýhe followingl Identity Is dem-
onstrated:

*~~ U -. '1 '*If4~ di 5  (33)
-r/d

Each term In Eq. (33) under the sum and integral signs represents a unit-ampli-
tude progressive -phase array excitation. 2wrtN rad In angular direction and
ky0 d + Irm/N rad in the skew direction. In view of Eq. (33). the electric field due
to the singly excited dipole element in a triangular lattce environment in

u-1 W/d
dIW P. k3 )dkA (34.)

-v/d

where. frbm Eq. (22a)

VEE k .(P s ) -"'E1 (•a'ko)s • T,,(vk) H,,(K•p" C (34b)
(m•e) -ewe

and T Is given by Eq. (22b). Following the procedure of Section 2.6. one can
readily show that the expressions for element pattern and far field are identical to
those of Eq. (31). where now

F(6.* = 04i6- m- (35)

and T 2 m, 0 Is given by Eq. (22b) with n a 0 and kz0 • k cosn .

4. NUMERICAL ANALYSIS

Based on the above analysis, a Fortran IV computer program was generated
for evaluation of the phase sequence active gap-impedances, of the phase sequence
active reflection coefficients at the input to the matching network, and of the ele-
ment pattern for both rectangular and Isosceles triangular lattice configurations.

15



4.1 Rectangular Lattice

The dipole current expansion coefficients Cq (see Eq. (9)) were computed

from Eq. (16a), where Q Is -e number of current terms. The (Q x Q) matrix in

Eq. (16a). with the elements A as given by Eq. (16b). is Hermitian, that is,
A p A A and, therefore, only Q(Q + 1)/2 matrix coefficients need be evaluated.

Pq q
Furthermore. one observes that the A and. consequently, Cq, as well as the gap
imped ~gces Z ks 0) and the reflection coefficients rl(u& kso). are even fune-

tions of P'. This result follows, for instance, for Apq. by first performing a

change of variables P - P -(N - )/2 for N odd and v-o p - NO for N even. As a xe-
sult. U 0 E-(N-)/2 for N odd and -N/212 for N even. From

Eq. (16b), It is now obvious, upon replacing P by - r and simultaneously m by -m.

that Apq(P) a Apq(- V).
The Bessel and Hankel functions in expressions for Apq were evaluated by the

usual numerical methods. 7 each applicable in its own range ft valift with respect

to the argument and order. To avoid numerical overflow or underf•ow In regiame

where asymptotic expansions apply, the Bessel aneduake fmnntio wetw not cal-
culated separately but. Instead, an asymptotic expression for Z M) was Wn-

ployed as described In Appendix E. In this fashion, the exponeatial dependence Of
the individual factors has been suppressed.

The double sum in Eq. (11b) was evaluated in the form ,ngf (ZmtM). With

respect to the rate of convergence of the series In Eq. (16b). the fallowing obseft-
vations are relevant: The series Zn converges as 11n 3 . Since w12p 0 << 1 In the

factor SVm as given by Eq. (14c). the rate of convergence of Em ts predomInatly

determined by the large m behavior of Z&,, (2  which is l/xImI N. The slow
convergence of this series with respect to the angular index m was accelerated as
described in Appendix C. With such convergence acceleration add with the Mhe-

significant-digit accuracy of the Bessel functions, a numerical accuracy to five
sitnlficant figures in Zg( 9v kso) was. obtained for ka a 120. using modadl lndieede i

and n between *10.
The set of equations (16a) was solved using Gauss's elimtiationt tthetbod. It

should also be mentioned that for 0 -a r/2 (kN 0). that is. In the principal H.
plane cut of the element pattern, the axial dipole current deonG-tr is refletioft-

symmetric with respect to the dipole center. For.an arbitrary phasifg kt 0 . that

is. for a conical cut with 0 # 702. odd terms also appear in the series 1Eq. (108).

However. the resulting asymmetry is relatively minor, since the magnittudes of

7. Abramowitz. M., and Stegun. I, (1964) Ulandbokk L~thamatLnal mt .
'US. Dept. Commerce, Mat. Bur. Stand.
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even (q) dipole current terms are much smaller than the odd (q) ones. This fea-

ture is due to the constant gap E-field assumption.

Using the known dipole current coefficients, the active gap-impedances Zg

(Y, kzo) = Rg(P, kZ0 ) + JX_(p. kzo) were calculated from Eq. (18). Figure 5
shows the "broadside scan gap-resistance R (0. 0) versus the number of dipole

current terms for three dipole lengths. L - 0. 4A, L z 0. 5A, and L = 0. 6A. The
respective reactances X (0, 0) are seen in Figure 6. Since, in this case, the even
dipole current terms are not excited, they are not shown in Figures 5 and 6. One

observes that for short dipole lengths, a single current term yields a good approx-

imation to the dipole impedance. It was found that the curves Z (vP> 0, kz0> 0)

versus Q exhibit a similar behavior as Z ( 8 = 0, kz0 = 0) shown above.

The relative convergence phenomenon was observed by monitoring the behav-

ior of current expansion coefficients and active gap-impedance values as a func-
tion of the number of unit cell modes nmax and the number of current terms Q. It

was found that, for a stable solution, it is necessary to impose the condition
Q < 2Ln max/d. For example. If nmax = 15 and d = 0. 7, one requires Q < 17 if

L a 0.4k, QQ< 21ifL a0.5k,. andQ< 25 ifL = 0.6 ,. If Q increases beyond
these values, the numerical values for Z tend to become progressively less ac-
curate, as can be seen from Figures 5 and 6. This condition on Q insures an ade-

quate resolution of the dipole current distribution in terms of the unit cell Floquet

mode basis. Therefore, the highest axial spatial frequency of the truncated unit
cell mode basis 2wrn /d shculd be greater than the highest spatial frequencymax
Qir/L of the dipole current basis. If a high degree of accuracy in Z is desired,

that is, when more current terms are needed, one must also increase nmax and
mmax, respectively. The reason for the increase of mmax along with nmax is

the behavior of the Bessel's functions in Eq. (16b). Namely, with Increasing
(2)nmax, the arguments of the Z Vm(Kn; a, p 0 ) and of Hm(K P0 )increase. There-

fore, to achieve a sufficient accuracy in A pq' it is necessary to increase V m past
the transition region, that is, Vm> 1KnP01, where the convergence of the series

may be accelerated as described in Appendix C.

The active reflection coefficients F1 ( (P, kz0) at the input port of the matching

network were computed from Eq. (19a). Two simple matching networks have been

considered: (a) series and (b) parallel, both shown in Figure 7. In each case,

42 = 0 and network parameters have been chosen so as to match the active cylin-
drical array at V = 0 and kz0 = 0 (see Figure 3). In Figure 7, the transformer

8. Lee, S.W., Jones, W.R., and Campbell, J.J. (1970) Convergence of numeri-
cal solution of iris-type discontinuity problems. Antennas Propag. Symp.
Dig., Ohio State University, Columbus.
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Figure 7. H-Plane Voltage Element Gain
Pattern for Cylindrical and Reference
Planar Arrays and Matching Networks.
(a) Series. (b) Parallel (bI/X 0. 6d d/A
=0. 7. ka z 120)

ratio no (R (0, O)IZi )1/2 in case (a). and no (Y1 /Ggi(Os 0)1 /2 in case (b),
where Y(v, k I1/ Z(v. k )G (v, k ) + JgB" v.0

g :0 g zO g k). z
The element patterns of the excited element located at (p0. 0 0 90r, u0'

were calculated in the spherical coordinate system (r, 0, ).having its z -axis
coincident with that of the cylinder according to the relations in Eqs. (31) and

(2 9b).

4.2 Triangular Lattice

The steps in Section 4. 1 apply also to a triangular lattice. The dipole current]
density expansion coefficients are again computed from Eqs. (16a) and (lob) but

with (m + n) even. The convergence of the series in Eq. (16b) was accelerated as
described in Appendix C. Because the axial unit cell dimension is 2d (see Figure
4), the relative convergence condition is Q < Ln maId. The element patterns

were calculated from E~q. (31) using Eq. (35).
The program was run on a CDC 8600 computer at the Courant Instituto of

Mathematical Science, New York University, N.Y., and at the AFGL Computer
Center. Hanscom AFB. Mass. All calculations were carried out in single preci-

sion (15 significant digits on a CDC 6600 computer) complex arithmetic. The ex-

ecution time for a 180-point element pattern Is less than one minute. The memory
required for this program is 150 kbyte a.
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5. NUMERICAL RESULTS AND DISCUSSION

The amplitude and phase of the element patterns were computed for represent-

ative values of array parameters, and the results are grouped to exhibit the sig-
nificant trends. The numerical results stress the element performance aspects

relevant to cylindrical array design.

In order to maximize the broadside element gain, a matching network appro-

priate to in-phase excitation of all dipoles was employed throughout. Except when

explicitly stated, the following values of dipole length, width, gap size, and dis-
tance to the cylindrical ground were employed, respectively, L/k - 0. 5, w/f,

= 0.05, h/ X z 0.01, and s/A, - 0.25. In all cases, field amplitude (voltage) ele-

ment patterns were normalized to the unit cell gain (4rbd/ 2 )1/2, and 10 dipole

current terms were used in Galerkin's procedure. Most of the numerical results

were generated for rectangular grid arrays in conjunction with the design and per-

formance evaluation of the cylindrical array described in Part 2 of this report.
They are presented in Figures 7 to 20; those for the triangular lattice appear in

Figures 21 and 22. Each is followed by a detailed discussion.

•- 0..5"F--

0.7 \ 0.6 0

0.6 b

Z 0.4

W
w-I
'W 0.2

0.0,
0 20 40 60 80 100 120

AZIMUTH ANGLE, e (DEG)

Figure 8. H-Plane Voltage Element Gain
Pattern (dX 0. 7, ka = 120). Parameter:
azimuth spacing b/X a 0.5, 0.8. 0.7
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5.1 Rectangular Grid Array

5. 1.1 INFLUENCE OF ARRAY GRID PARAMETERS

5. 1. 1. 1 Element Amplitude Pattern - Forward Region

Figure 7 shows a comparison of the principal H-plane cut (0 = 90( ) of the

voltage element pattern for ka = 120, b/X = 0. 6, d/, x 0. 7 with that of the corre-

sponding planar array. It is observed that both patterns are similar and exhibit a

substantial drop-off near 0 a 42?. In the planar array case, this drop-off is

caused by an end fire grating lobe condition (EGL) for b/X * 0. 6 and, in the cylin-

drical array, by its quasiplanar counterpart. As expected, the planar array drop-

off is steeper (since. in view of the curvature in the cylindrical ar'ray. fewer ele-
ments participate in the EGL effect).

Figure 8 illustrates the b/X dependence of the 0 a 90°cut for ka = 120 and an
axial spacing of 0. 7). It is found that, as in plawm- arrays, an increase of b/X

causes a predictable progressive narrowing of the element pattern.

The curves of Figure 8 also exhibit a ripple in the broadside region, whose

amplitude diminishes with tightening of azimuthal spacing and becomes negligible

for b/X = 0.5. On the other hand, for b/X = 0.7, one finds a peak-to-peak ripple

amplitude of about 0. 5 dB. In a low sidelobe cylindrical (or curved) array design,

it may be necessary to reduce the ripple amplitude and consequently employ a

tight azimuthal spacing. More on this subject will be said in Part 2 of this report.

The ripple is not an edge effect, as no aperiodic edge discontinuities exist in an-
gularly and axially periodic cylindrical arrays, but is due to the interference of

the direct single element radiation (with planar element pattern) with the grating

lobes of respective quasiplanar subarrays excited by the guided creeping wave
phase gradient, as discussed 1 ' 4 for the case of cylindrical arrays of aperture ele-

ments. Since the ripple is a result of a combination of the angular periodicity of
1,the array and its curvature, 1 it is also expected to appear, and is, indeed,

found in curved periodic dipole arrays.

To exhibit the element pattern features as a function of the elevation angle,

Figure 9 shows a number of constant 0 (conical) cuts for ka = 120, b/I, a 0. 6, and
d/X w 0. 7. Several trends are observed with decreasing values of 0 measured

from the cylinder axis: The EGL drop-off broadens and shifts toward larger val-
ues of 1; the E-plane gain level is progressively reduced, and the ripple ampli-

tude decreases. The first two of these features may be explained in quasiplanar

terms and are predictable from the local planar grating lobe diagram adapted for

the cylindrical array geometry as shown in Figure 9. In this figure, u0 0 = VOka

= sin 00 sin and V0 0 = kz 0 /k a cos o0. As usual, the (m a 0, n = 0) reciprocal

lattice point specifies the main beam direction; all other points (m. n) correspond

to the grating lobe location in (u, U ) space. The (m, n) lobes with um2 + V2 < Imn mn
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are visible. Thi w•out of 1--4h0 of BOT• Orn-off toward larer valucs of 0 with

decreasing 0 may be predicted from the geometry of Figure 9, which leads to the

relation: *

sin .__ I - s e + n -mX]
ELsine iwi Gml -li'

(m•O, w l, ... (n a 0. *1,•••). (36)

It is seen from Eq. (36) and Figure 9 that in the H-plane (9 a 9W )h the grating

lobe (m = -1. n a 0) enters into real space at 4EOL 42?, As 0 decreases, the

corresponding OEGL shifts toward larger values of #. causing. as already men-

tioned, a widening of the element pattern., The potential EGL drop-off correspond-

ing to the axial grating lobe (m = 0. n - -I) for d/k - .7. as predicted from

Eq. (36) is not noticeable at 0 - 60i *EGL = 25.4- The tapering oft of the EGL

effect with decreasing S and the associated diminishing of the ripple amplitude in

Figure 9 are attributed to the reduction of mutual coupling in axial dipole arrays

for dii'ections off the principal H-plane, and particularly In the near R-plane re-
gion.

Figure 10 shows three E-plane cuts for axial spacings d/I a 05, 0.6. 0. 7.

with b/X a 0.6 and ka = 120. It was verified (down to ka - 30) that the axial gain
roll-off with 0 matches that in appropriate planar arrays. Although an akial spac-
ing of 0. 7X admits only a limited (to about 230 off broadside) elevation scan of an

active array, element patterns for large values of 8 are useful for sidelobe level

evaluation.
Figure i 1 exhibits the dependence on cylinder radius (ka) of the EGL drop-off

and of the ripple ift the 0 = 90' cut. It is seen that, with decreasing values Of ka,
the EGL drop-off slope diminishes. Simultaneously, the ripple frequency is re-

duced and its amplitude increases. The tapering off of the EGL effed is tO be ex-

pected, since, with decreasing ka, fewer elements participate in its formation.

The reduction (with decreasing ka) of the ripple frequency is due to reduction of

the creeping-wave grating lobe phase delay variation per unit incremeti in the ob-

sei-vation angle. Finally, the decrease of ripple amplitude with increasing ka is

expected due to the increased creeping wave loss. In the planar limitb no ripple

is observed.

*'This relation can also be obtained from the condition of transition region bound-

ary HM (KnPo), that is. I Km =nPO, with VO/&top 0 = sin ,0 sin •0 and
kzn/k = cos S0 + nk/d.
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5.1.1.2 Element Amplitude Pattern-Shadow Region

Knowledge of the shadow region slope Is important in the evaluation of far

sidelobes. Figure 12 illustrates the dependence on cylinder radius of the shadow

region slope, in the 0 = 90' cut. It is seen that the slope is linear on a dB scale

and is found to increase as (ka)1 / 3 . The linearity of the slope indicates that the

angular pattern in the shadow region is primarily due to a single creeping wave

contribution with an angular attenuation constant proportional to M&7)1/3, The rip-

ple in the 0 = 180' region, similar to that found in the case of au unperforated cyl-

inder, is a result of the interference of two creeping waves traveling in opposite

directions around the cylinder. The resolution of this ripple at the very low pat-

tern levels attests to the high numerical accuracy of the theory and nunerical

techniques.

Figure 13 presents the 0 dependence of the shadow region slope. It it found

that in the range of 0 shown, the slope varies as sin1/ 3 0 . The overall depend..

ence of the shadow region slope on (ka sin ) 1/3 is consistent with other asymp-

totic developments. 1,4 In all cases, the computed shadow region slope was in-

sensitive to axial spacing.

Figure 14 exhibits the dependence of this slope on azimuthal spacing, for

d/k = 0. 7. ka - 120, 0 - 90'. One observes (see also Figure 6) that the patterns

intersect; while the element pattern for b/A = 0.5 is wider in the broadside region.

its shadow region slope exceeds that for b/A = 0,7 so that its shadow region ele-

ment gain falls below that for b/X a 0. 7. This result is not unexpected, because.

fe• smaller values of b/k, the creeping wave generating the shadow region H-pkane

pattern encounters a larger density of match-terminated elements. The minor

,pendence of the E-plane pattern on b/X is not shown.

5.1.1.3 Element Pattern Phase
I

Design of a cylindrical arrr v requires knowledge of the element phase center

location. In Appendix F, we describe element phase pattern reference point trans-

forý ation from array axis to the point (ph 0 = 90', * = 0'). Namely, it was found

that the flattest element pattern phase in the broadside region is obtained for the

ph,.e reference location approximately at (Pph a + 0.8s, a. 9.0' * a 0' ). that

is, 0. 2 s below the dipole center. Figure 15 exhibits the element pattern phase in

the 0 = 90' cut for the phase reference location at pph, its dependence on b/A, for

d/X = 0.7. One observes that the phase varies only by a few degrees up to the

EGL drop-off. Thus, the principal H-plane EGL position essentially determines

the limit of usefulness of the element, both in amplitude and phase. Figure 18 pre-

sents the E-plane element phase pattern versus axial spacing for the choice of

parameters of Figure 10.
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5.1.2 INFLUENCE OF DIPOLE DIMENSIONS

The Influence of the dipole length L and of the distance to ground a on the cyl-

indrical array element pattern was Investigated in the 0 i 90' cut for b/A - 0. 6

and d/k - 0. 7. For each selection of an ML, a) combination, the array was

matched for in-phase excitation. The variation of the element gain pattern with L

and (or) a, for L/I a 0.4, 0. 5, 0. 6. and 0. 2 4 e/ ,<, 0.3 was found insignificant.

On the other hand, the influence of these parameters on the gap impedance was

observed (see Figure 17). It is seen that for L/A a 0. 4, the unmatched broadside

gap Impedance Z (0. 0) Is capacitive: for L/A - 0. 6, it Is inductives vWhie for

L/I a 0. 52 aS(0, 0) passes through resonance.

5.1.3 FREQUENCY AND SCAN DEPENDENCE

Knowlr.dJe of frequency and scan-dependent gap impedance Z( (A k 0 i f) ior

needed to design a mLchlnUg network. Figure 18 illustrates the frequency and scan

dependence of the E- and H-plane gap impedance. The array parameters at cen-

ter frequency fc are b/Ac a 0. 5. dOa - 0. 6. s/A, a 0. 25. L/A€ - 0. 5. h/Ac a 0. 01,

and w/•c - 0.05 with ka - 120. The active gap-.mpedanc* curves Z(r, ks0ore)am

prenented for the three trequenre8sf I 0. 9 Ia. f - to and t - 1. 1 tc" L Fre 18.

the gap impedances (normalized to Z0  100I ) are plotted versus elevation scan

angle So and discrete values of auimuthal scan angles #o, where coo s0 a kso/k

and sin 0 sin # 0  a ik v - 0, 1.... N - I. This enables one to compare the

scan dependence of the dipole gap-impedance in a cylindrical array with an equiva-

lent Infinite planar array. Although Z depends on both the scan angle and fre-

quency f. it Is seen that its variation with 0 is much greater than with I within a

*10 percent frequency band. In a cylindrical phased array, the large scan angle

in associated with the edge elements of the excited are. For broadside-

matched elements and a broadside scanned array, these elements will experience

a significant Impedance mismatch. However, the associated reflection power loss

is usually reduced by an amplitude taper of the excitation. The variation of gap

impedance versus (00. #0) and versus frequency is similar (as one would expect)

to that of a corresponding planar array. Figure 19 compares gap impedance

Zg(G0  7r/2. #r) dependence on #O at f - f.. for ka - 30 and ka - 120 with those

of the equivalent planar array. The Smith chart normalization is in this case

Z0 - 500o . A region of overlap (0 0 0- to 50 ) may be unticed. For # 0 > 50P

curves for ka - 30 first and subsequently those for ka a 130 gradually depart from

the planar ones, due to the curvature effect. It was verified that in the E-plane.

the values of Zg( 0 (00# 0- ) are essentially equal to those of the active impedance

of a corresponding planar array down to ka - 30 and are therefore not shown.

Figure 20 Illustrates the frequency dependence of the H-plane element pattern.

The array was broad"ldie-matched at center frequency fc. A simple, realistic
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matching network that consists of a Ac/4 transformer is also shown in Figure 20.
The transformer is placed a distance A2 away from the dipole so that the trans-

formed gap impedance at terminals (2 - 2') is real. Since for the given geometry

Z (0. 0) - (137 - J38)D and Z1f 509, the value of Z2 was chosen to be Z 2 = 137Q.
As a result, £2 a 0.38k and Zt 95Q. With these (fixed) matching network para-

meters, the frequency was varied over a *10 percent band. It was observed that
the voltage element gain pattern does not change significantly. The pattern shape

depends primarily on b/X its already discussed, while broadside gain decreased

0.2 dB at the end of the band. The curves in Figure 20 can also be obtained (in the

lit region) approximately from

IF (E. o 7 -- )I cos. (37,

where f1 may be computed from Eq. (19) with the help of Figure 18.
An additional remark is warranted here. It is known that in planar dipole ar-

rays, the feed structure can give rise to E-plane blind spots. These are not pre-

dicted by analyses that disregard the influence of the feed structure on radiation.
By inference, such blind spote are also expected to appear in cylindrical dipole

arrays. Various empirically based remedies can be employed and have been

found effective. 9

5.2 Triangular Grid

Two isosceles triangular grid geometries were considered. Both grids are

derived from a rectangular lattice with b/X = 0. 6. d/X = 0.7, and preserve the

unit cell area. The first grid (a) is obtained by displacing alternate rings by half
the circumferential spacing, the second (b) by shifting alternate columns by half
the axial spacing. The two grids produce quite different element patterns.

In the isosceles triangular lattice, for a constant 0 cut the EGL drop-off, due

to an (in, n) grating lobe arriving at the unit circle should appear at

sin n- 1- -os--+-

EOL ginO 7mI2 b

(m = O, *1,...), (n= 0, *1,...) (38)

Swhere (m + n) is even. 7

9. Herper, J. C., Esposito, F.J., Rothenberg, C., and Hessel, A. (1977) Sur-
face resonances in a radome covered dipole array, IEEE Antennas Propag.
Symp. Dig., Stanford University, Stanford, Calif., 198-201.
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Figure 21 shows the local grating lobe diagram for the grid of type (a). It is

seen that, in this case, relevant grating lobes are (-1, -1) and (0, -2). According

to Eq. (38), an off H-plane grating lobe (-1, -1) should cause narrowing of the ele-

ment pattern with decreasing 0. This is in contrast to the rectangular grid refer-

ence array case where the EGL effect is due to an H-plane (-1. 0) grating lobe.
As a result, the rectangular grid element pattern widens with 0 tending toward the

axis [see Figure 9 and Eq. (36)]. Based on Eq. (38), one expects for b/X a 0.6,

d/A = 0.7 that OEGL = 7 5 for G = 90' and OEGL = 510 for 0= 70'. The smooth
pattern in the H-plane and narrowing of the patterns (with decreasing 0) as well as

the predicted values of OEGL are also observed in Figure 21. In addition, one

finds an increased sharpness of the EGL drop-off and an increased level of the

associated off-broadside ripple with decreasing 0. Such behavior is not unexpected
because ot the increase of mutual coupling when the grating lobe propagation direc-

tion approaches the principal H-plane with decreasing 0.,
As expected, the E-plane element gain performance is found to be similar in

both the triangular and the rectangular lattice arrays, since, in both cases, the

axial grating lobe is located at -X/d.
The alternative grid (b) and the pertinent grating lobe diagram are shown in

Figure 22. The 0 = 90f pattern is similar to that for the rectangular grid refer-

ence array, which is plausible because of the same grating lobe location. In the
range 0 = 650 to 90', the influence cf the grating lobe (-2, 0) on the element pat-

tern is dominant. According to Eq. (38), however, at 0 = 60', two EGL effects
are expected: one for 46EGL = 67' due to the scanned off H-plane grating lobe (-2.

0); the other at OEGL = 320 due to the off-principal-plane grating lobe (-1, -1).
Both are barely noticeable in Figure 22. As 0 decreases, the former grating lobe

moves toward larger values of 40, while the latter approaches 48 = 0'. For 0 - M0r,
the dip is predicted to appear at OEGL = 10° and, for 0 = 40P, at 0.7', which is

well borne out in Figure 22. For a further decrease in 0, in addition to (-1, -1),

the (1, -1) grating lobe also moves into real space, both at 4 a 0a'. This results in
a sharp E-plane dip shown for 0 a 30' . With increasing values of 46(for 0 a 30U)
the (1, -1) grating lobe moves out of real space, which produces the peak in the

element pattern gain near 46. 20' in Figure 22.

The E-plane gain roll-off is slower than in the rectangular grid reference ar-

.ray case, because the E-plane grating lobe is further removed from the real space

edge.

In view of the above data, the choice of rectangular versus triangular grid is

based on the maximum axial scan-angle, the extent of the excited array arc, and
the desired frequency bandwidth. As the numerical results show, the lattice de-

sign of large, cylindrical, uniformly spaced arrays may be safely based on the lo-
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cal grating lobe diagram. (This, of course, excludes any blind spots due to feed

effects.)

5.3 Comparison With Other Results

The few relevant references found in the literature are as follows:

1. An asymptotic Grezn's function in the presence of a conducting cylinder

is employed 5 to analyze circular arrays of axial dipoles in a rectangular lattice.

Comparison of numerical results 5 with those based on modal analysis leads to the

conclusion that, although qualitative element pattern features in the forward region

such as the EGL drop-off and the off-broadside ripple are exhibited, the details

differ from those obtained from modal analysis in the following: (1) The 0 a 75"

near # 0" average level is higher than that in the principal H-plane, which is at

variance with the present results and with those for planar arrays; (2) The E-plane

element gain loss at 6 = 60r (off axis) is about 25 percent. as compared with the

32 percent roll-off predicted by modal analysis; (3) No shadow region results are

presented; (4) The matching scheme and the pattern normalization are unclear and

no absolute element gain information is presented.

2. Another result is found. 6 Here. the analysis was carried out by an inter-

esting boundary layer method, using the parabolic equation approximation applied

to uniformly spaced arrays on convex cylindrical surfaces of arbitrary but slowly

varying curvature. The rpsults relevant :o this report are contained in Figbre 3

of Indenbom and Filippov6 for b/A = 0.6 and d/ A f= 0.54. For convenience, this

figure is reproduced in Figure 23 here along with results for 0 = 60P and 90' ob-

tained by modal analysis. The normalized voltage element gain pattern in the 6

= 90* cut compares well with that based on modal analysis. However. the pattern

for 8 = M0r does not match our results, both in the * • 00 gain level and in tpe

element pattern shape. It exhibits two types of ripples absent in our results and

not accompanied by the usual EGL dips. From the grating lobe structure for the

geometry in question, EGL effects are predicted in this case, and, therefore, the

pattern is expected to be smooth.

3. We have also compared our results with results for cylindrical arrays of

aperture elements. The mutual coupling effects, such as the endfire grattng lobe

condition gain drop-off and the off-broadside ripple in dipole arrays above cylin-

drical ground are found to be considerably weaker than in similar arrays of aper-
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ture elements, in various analyses. 1. 4. 10 11, 13 This is expected, in view of the
appearance of dipole "Images" with phase reversed currents that tend to reduce
the mutual coupling in dipole arrays. By contrast, in aperture arrays, the "im-

ages" reinforce the excitation of mutual coupling effects. It is reasonable to com-
pare the element patterns for arrays of axial dipoles with those of circumferen-

tially polarized rectangular waveguide elements, since, in both cases, the circum-
ferential plane corresponds to the direction of the strongest mutual coupling. It

can be seen from Sureau and Hessel1 0 and Figure 24 that, in the case of rectangu-
lar aperture elements, the EGL effect appears as a pronounced dip and not mersly

as pattern drop-off. Also, the off-broadside ripple level is appreciably higher
than in dipole arrays.

6. CONCLUSION

The numerical results for the element pattern of an axial dipole element in a

cylindrical phased array lead to the foUowing conclusions:
1. The grating lobe effects on the element gain and phase pattern in uniformly

spaced, large radius, circular cylindrical arrays of axial dipoles are reliably

predicted by locally planar-grating lobe diagrams for either rectangular or tri-
angular lattices.

2. The creeping waves interfere with the direct element radiation in the for-
ward region and produce a far field in the shadow region with an angular attenua-
tion constant proportional to (ka sin 67)1/3 The influence of both effects on the

element pattern (ripples in the forward region and finite values of the pattern in
the shadow region) must be known to predict the sidelobe performance of cylindri-

cal phased arrays accurately.
3. For a given lattice and frequency, the element gain pattern is insensitive

10. Sureau, J. C., and Hessel, A. (1972) Realized gain function for a cylindrical
array of open-ended waveguides, in Phased Array Antennas, A.A. Oliner
and GH. Knittel, Eds., Artech House, Dedhain, Mass.

11. Borgiotti, G. V., and Balzano, Q. (1970) Mutual coupling analysis of a con-
formal array of elements on a cylindrical surface, IEEE Trans, Antennas
Propag . AP-18(No. 1).

12. Borgiotti, G. V. , and Balzano, Q. (1972) Analysis and element pattern design
of periodic arrays of circular apertures on conducting cylinders, IEEE
Trans. Antennas Propag., AP-20(No. 5).

13. Borgiotti, G. V. . and Balzano, Q. (1972) Conformal arrays on surfaces with
rotational symmetry, in Phased Array Antennas, A. A. Oliner and G. H.
Knittel, Eds., Artech House, Dedham, Mass.

14. Collin, R. E. (1960) Field Theory of Guided Waves, McGraw-Hill.
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to the element dimensions and ground plane spacing, provided in each case that

the element in appropriately "broadside" matched.
4. The -rmnatched gap impedance exhibits significant dependence on dipole

length and its distance to ground. Thus, the basic limitations of the dipole ele-

ment rests in its scan and frequency-dependent Impedance properties and those of

the matching scheme.
5. The gap impedance is similar to that of a corresponding planar array.

Therefore. planar array simulator techniques for designing and matching radiat-

ing elements can be used.
6. The diol,*e phase center is located near the element and not on the 3round-

Ing surface.
7. Mutual coupling effects, except for possible E-plane feed interactions pro-

ducing blind spots, are less pronounced than in similar aperture arrays.
8. Polarization purity, wide bandwidth, lower mutual coupling effects, ease

of fabrication, and low cost make the axial dipole a suitable element for cylindri-

cal phased arrays.
9. The theoretical results compare well with experiment (see Part 2 of this

report).
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Appendix A

Floquet's Theorem for, Isoseees Triangular
Array Lattice

With reference to Figure 4, let the usual Floquet expansion for any field coom-
ponent in the unit cell of size (2w/N x d)z be

am : (P) e(i " (^A) W
'P ,I = - s (p

where a ale the amplitide coefficients of the (in, n)th Floquet mode, with

tom (m 2 0*h... ) (Aib)

and

k o(n- 0. W...). (Ale)

For a triangular lattice. Floquet's theorem imposes an additional constraint
on Eq. (Ala) so that a displacement by (r/N) in 0 followed by that of d In z multi-
plies the field by the phase constant exp(-jE). that is.

'P + 21) = W'(*. a) (M2)
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It is sMen from Figure A I that
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Figure Al. Unit Cell Cross Sectlou at
P " Po of a CrcularCydr• • Array
With Trianuhlar Lattice

Substituting Eqs, (Ala) and (AS) Into ICq. (AM), one finds

.• " a li'a (am*4 ) 0'l(va +• " dl

S + k,1 (A4)

Using Eqs. (A lb) and (A ic) and the orthogonality of the Floquet basis In Eq. (Ala).

aj(v.&D + kd) j-,J(it + kldl - (AS)

whereupon, it follows that

amnie'l"hi -13 0. (AS)

42



Thus, ain a 0 uale" (O + a) Is an even Integer. Coneequently. we conclude
that in an isosceles triangular lattice. Floquet modes with (m + n) odd are not ex-
cited.

43



Appendix 8

Single Element Exciton in a Triangular Lattice

A single (a- 0. t = 0) element excitation tn the triangular isosceles lattice of

Filgure 4 is expressedIn terns of an excitation vectora t (a - O 1....

N - 1; t 0,*l...) where # (

"696 V 3f 1'ikdm .. (Bl)
47rN l--n-Wld

Each exponential term In Eq. (Bl) represents a unity-ampUtude progressively-
phased array excitation 2 wI/N in the angular direction and ksod + wv/N in the

skew directlon. In this Appendix. we verify the Identity Eq. (E1). To this end.

one observes that

m/d
-- 2• f e'km(t like : to (two, *IS ..... (B~a)

and
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SI+ %

N ts ,In. (Bb)

The product of the left-hand sides of Uqs. ()320 and (B2b) Ia

4:8ut a fte (88 •.~.C3)

Since s 1... N - 1. it follows that. in Eq. (M3). only the A 0 term contri-

butes. Therefore. Ato d2 a +t. 2AN Sto ago Q.E.D.
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Appendix C

Covergence Acceleration

As already mentioned in Section 4, the double sum in Eq. (16b) may be evalu-

ated as E g (g fi)" In this Appendix, we describe a convergence accelerationn nm (Mmn)
of the series m fin To this end, we write

an=a= I fin (Cla)

where fmn is given by Eq. (16b) as

8ina(VmX) (2)
fmn (mX) 2  Zt,(Kn; ap) AHP (Kp 0 ) n a 0, *1, ... ) (Clb)

with x: w/2P . For convenience, let a oo+ a*, where - fonand

" fn (C2)

The prime indicates the exclusion of the m = 0 term in the infinite sum. The

method to be described is carried out for both the rectangular and the triangular

lattice geometries.
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C 1. RECTANGULAR LATTICE

To facilitate convergence acceleration of ao, it is desirable to introduce theS_(2)
first-order large index asymptotic expression for ZVmH (rn' that is,

ZVm IKn; a. p) H' 2) (KnP°) J J aKe.Po) V (Kn1 (MN)

In view of Eq. (C3). one can rewrite Eq. (C2) in the following form:

O= Fmn + 9 (C4a)

where, since un= M + inN,

F iln2(PVX; o)1 H12vrnNFinn [ (IIKn . O I vtvrn
(P "X)2 M "'nH (V"Po) " "rImIN - , J (C4b)

and

2TN xa m:--" im1 " (C4c];

One observes that the series in Eq. (C4b) now converges as 1/m 2 . The tirn S it
Eq. (C4c) may be evaluated with the aid of Collin, 14 P. 579. The estalt ile tlhe

rapidly convergent series:

1 [A (I - cou(2wx)) -0 (CSa)

where

A: M 1 1.20205690 (IC5)
m:l.L3.2...

and

B =(Nx)2 cos (2vx) [2 In (2Nx)- 3 - (N•.) (C5c)
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C2. TRIANGULAR LATTICE

In view of Eq. (AS), we distinguish two cases:

For n odd

1.3....

0= • Finn + Sodd (n *1, *3,...). (C6)

The series

$odd 2 J F 2 M 1 (C7a)irNax2 m=....1. Ilnt

may be cast into a rapidly convergent form (Collin, 14 P. 580)

Sod Wj [Aodd (1-cos (2Rx) - Bodd] (CMh)

where

Aodd= = 1.05179979 (CM7) '0

mi=.3....

and

Bodd (Nx)2 cos (2 vx) (In(Nx) - + .... ] (C7d) ]
When n is even

2.4....

a Go+ Fmn + Se (C8a)

where

S= S - Sodd. (C8b)
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Appendix D

Matching Networks

The load impedance is connected to the output terminals of a two-port match-
ing network characterized by its scattering matrix. .

In Section D1, we first derive expressions for the reflection coefficient at the .
input to the matching network and for total voltage at the load.

Similarly, in Section D2, we derive expressions for the reflection coefficient

at the input to the matching network and for voltage at the load (dipole gap-imped-
ance) which is now connected to output terminals of a matching network via a
transmission line.

In Sections D3 to D5, we determine the elements of a scattering matrix for
three specific simple matching networks: series, parallel, and quarter-wave

transformer.

DI. LOAD IMPEDANCE CONNECTED TO OUTPUT TERMINALS OF
TWO-PORT MATCHING NETWORKS

The S-parameters of a linear, passive two-port network can be defined with

the help of Figure D1. As shown in the figure, V+ (J - 1. 2) are the traveling
waves incident on the junction, and V are the reflected traveling waves from the
junction. By linearity, the incident and reflected waves are related by

2 +
V Z V for 11. 2 (Dia)
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Figure DI. S-Parameter Representation of a Two-Port
Network ]

or

v =s 1 1 v+s 12 v2 (2b)

V = S2 V + S22 V; (Dle) -

From Eq. (Dlb), it is seen that S1 1 in the reflection coefficient in the Input vuide i..

with guide 2 terminated in a matched load. Also,. S21 is the transmission coeffi-.

cient into guide 2 from guide 1 under the same condition. Slniltat statements ap-

ply to the parameters S2 2 and S12.
If guide 2, with its characteristic impedance Z 2, is terminated by an imped-

ance Z at the terminal plane (2-2') (see Figure 2), I then V - may be regarded
as the incident wave on Z 2 2 ..' and V2 is the wave reflected from Z22. The ratio

must be equal to the reflection coefficient of the load; hence.

v2 Z22-' - Z2
F2 02)• D•

V 2 Z22- + Z 2

1 i 81 12 2

'V* r\"." -\

vri

SV821 S=2 - 2

Figure D2. Two-Port Matching Network Connecting
Load Impedance Z 22 -' With Transmission Line I
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Using Eq.. (D1) and (D2). one can now determine the input reflection coefficient

fr in terms of S parameters and r2:

1 1 1  1 S 12 V2 S1 2 r V2 (D~a)

s12  1I V 2 - S2 2 r2 V2 Db

so that

r Vl S Sl 2 82 rl _S1ld (D3c)

1 S22Iir2 1-S 2 2 72

with

AS- S 2 2 -S 12 S2 1. (D3d)

Consequently, the input Impedance is

in Ij7I j
One can also find total voltage V2 at the load in terms of the S parameters and

the incident voltage Vl:
In view of Eq. (D2). one has

Vi S2 VI1 + S22 r2 V2 Da

or

V• 2 2 1 (D~b)S21 S+2T2V

Using

V ~ V + (D6a)=1 V1
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one finds from Eq. (Dib)

V1~~~l +- S11 Vtý rvsiiri -si (D1b
+ Vl'-ýSll Vt I'V -1V /I -1 +

V2 ' S12 S1 2  S12 V1 (DOW

or. upon substitution of (rj " S11,) from Eq. (D3c)

+ 21 r22- (+c)v2 -. S22 r22.. - I.

Using Eqs. (DSb) and (D6c). the total voltage at (2 - 21 is

+ v - S2 1 (I + r2) v+ (D7)2- 2v 2 + i-1- 9 r2 I

When the input line is matched as shown in Figure D3, one readily sees that

V2  V 2 +V2 V2 (1+5 2 2 ) (Des)

or

V2
Vt = -•- (DSb)2-I+S S2 2

and, consequently, since Vj = 0,

+ S12

1 1 12 2 I+ S22  2" c)

The output impedankce is then

1+ S22
Zout fZ 2 1 (D29)
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IiI
2

T, •,V2+v;~ d 11 8
ZI ~ ~21 822 I~;Z 2

Figure D3. Two-Port Network Connecting Matched-
Transmission Line 1 With Transmission Line 2

D2 LOAD (DIPOLE GAP IMPEDANCE) CONNECTED TO OUTPUT TERMINALS

OF TWO-PORT NETWORK VIA TRANSMISSION LINE

Transmission line of length A2 is terminated with dipole gap (load) impedance

Z and connected to output terminals of matching network as shown in Figure D4.

The output transmission line 2 has characteristic impedance Z 2 and propagation

constant .2"

I Sl 2i •14.09>

z-0 z

Figure D4. Load Impedance Zg Connected to Matching Network via

Transmission Line

In this case9 from Eq. (D3c). the reflection coefticient at the input to the
matching network is
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S11- (-loa)
1-S 2 2 r2

where now

r S. *-J2# 2 A 2  (DIb)

and

r • Za - Z2 (ICri" t + • •(Pl~c)

To find total voltage at z A26 that is. V - V(s A in terms of Incidence walt-
+age V 1 at the input port (1 - 1I) of the matching network, it in convenient to pro-

ceed as follows-

V 2 (z - o) - V+ ( o) + v- (s a- e) - v(s o)( ) (D+la)

where

Vr (z O+) rej2# 2 12  CIb)
I2 = V (z 0o) g r

and i is given by Eq. (DIOc). Using relations

V()V+ (z 0 o+1 _JP +v 1 o1zl
V2 (z) = (z V (z 0) eJ

V (a 0&) e+-AS (1 + ra eP002 3
(z 0V) (DI~a)

and Eq. (D11b), total voltage at the load is

V 2 (z=A)=V,=Vg (z= -0+1) e 2A2 (1+ r).

Substitution of Eq. (Dl2a) into Eq. (D12b) yields

V = V(z = 0+)eJ020 2 S2 (D13)
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Furthermore, substituting Eq. (D7) into Eq. (D13). we finally obtain

Vg S21 (1+ r. .jP2 A2  • (D14)
1-S22 r,

D3. S-PARAMETERS OF THE SERIES MATCHING NETWORK

The scattering-matrix elements will be evaluated for the series-matching net-

work connecting two lines with characteristic Impedances ZI and Z as shown in

Figure D5. This matching network, which consists of transformer and series re-

actance in cascade connection. .is employed in Section D5 for matching the dipole

gap impedance Z (Y. kz( to TEM feed-transmission line.

•r--------

II:n X 2

Za IIo 20

1' 2'#

Figure D5. Series Matching Network

The values of the transformer ratio no and the reactance X2 2 ' (P. kz ) are

chosen so that active reflection coefficient fi(P. kzo) at the input side of the

matching network is zero. To determine no and X (22(Y. kz0 ). we first write the

expression for impedance at the output term-Inals (2 - 2 1) of the matching network.

In reference to Figure D4, the impedance looking into transmission line 2 at z 0
is

Z2 2 -(. k•o) R 2 2 -(u. k-o) + j X2 2 E(m. kzo)

k 5 0 ) cos 02 2 + J Z 2 sin 02
SZ co o 0 2 A2 + j Zg(Y. k 0 ) sin 2 A2 (D15a)

where the gap impedance

Z zo gl kzo) + j Xg(is. kzo). (D15b)
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Thus.

R22 * (u kaQ)(D)
non z(DG

I

With elements of the series matching network so defined, the corresponding
S-parameters can be found as follows:

If the output line is matched as shown In Figure D6. we have

z 2 - J X22"(-*. knol

V1 + in + ZI I- jX 2 2 (w .0V2 no 2

Z 2 - Z2 2 ,"(&#. kso)

"z2 + 22 '(Pe ks 0 ) (Dl)

where Z 2 2 - (u. kzo) is given by Eq. (DiSa).

1~ '.-I -n-x•"I

z1'1 v;.'~ * 2
.---- - 1-J

Figure DG. Network Illustrating Evaluation of S1I
and S21 of Series Matching Network

With the input line matched (see Figure D7), one has

S , 2 41 -Zout - Z2 Z~nO A22(Y kzo) Z2

0V= o ut 2 1t0 JX2 2 '(u.k +
I

.Z 22 (v, kz0)-Z2 . (DI8)
Z2 + Z 2*.(u. k3 0 )
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'022

S. ---- -- ý-&2

Figtur DT. Network IUustrating Evaluatiou of S22

and S1 2 of Series Matching Network

To find S21, we again consider the o*put line matched (S" Figure D6). On

the input line. we have

V 1  VI + V1 V (1+ SIl) (Dl9a)

and

Since

+
_ V (D2Oa)

and

(D20b)

we see that

-Y V (1 - (D20c)
Y2~ Y V2 no 1

We now obtain

Vi7 Y,( 2sv1 Z2s2 -=-- -- (1 - s1)
21 2v Y+ 0  

z
2 + j Z1 - j x -(,, k~o)

V;=O

.j2 rg (.. . 1 Z- (D2 1)

Z1 Z 2 + Z 2 * .(P. kI 0
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Similarly. with the aid of Fi4gre D7. one can determIne S12 0 that Is,

+j -+ V" +
`2 vY2 (Va -V Y V(1 - 2) aYV( 1(DI)

0 2

Vja1jZiuan½ Zi '+ 0 (D22b)

so that

SlS 1 'Vi 1  %: R 0.3 20Z1 2 + z3 z +Z 3- jXXl.olVks0)

2 2% 2K (19

2 f" 2 2'-(V.,.o) Z1

Z +Z .(P. k,)

Notice the reciprocity relationship

Z = zIS2 1  (D23)

D4. S-PARAMETERS OF A PARALLEL MATCHING NETWORK

Here, we evaluate a scattering matrix of a parallel two port matching network

which consists of the transformer and suuceptance In cascade connection, as shown

in Figure D8.

The values of the transformer ratio n0 and the msuoeptance BOV (P. k5 0 ) arse

1 :no -jet,- I

v;'~\ ,-_______.-__ Y'

I I 29'
I.--------.

Figure De. Parallel Matching Network

so



chosen so that the active reflection coeftciet ri (r. ks0 ) at the tnput side of the

matching network is zero for the specific set of r, kn. (Wee Figure D4). The
transformer ratio no and susceptance 22 1 (p, k. 0 ) can be determined from the
relation for admittance at the output terminals of the matching network (2 - 2")

looking into transmission Uin 2. which Is

1
Y2 2 '.(p k 3 0 )a Z 2 2 10a'. a 0 2 2 .(0. k3 0 ) + J8122(.. k, 0 ) (D24)

where Z 2 2 . (V, k3 0 ) is given by Eq. (Dila). It n soeft thet

"no ( k [ Y(D2I)o 2G2'.(,,. k 0)•

Next, we determine the S-parameters of the parallel matching network. With

the help of Figure DO. we write

Sum-II a
SIC"V1 Y+ " -IYin' . IU %(M2' PB -("okno))-- ' " "•

V I y + Y+Y YIn +4 (Y2 "JUn-t(V- kao))

Y2 2= No) -2 (D26a)

Y *.(•• . k 0 )+Y 2

and

v-i YI ayl 1
2~~v j a.(1 -S )x~ (D26b)S2 V+ y 1o "o Y2"' (Y. o k + y
I1 n 2s + 2

V NO

With the aid of Figure D1O. following a simlar procedure, one determines

S2 2 . that is.
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V2 Y2 - Yout Y2 + J B2 2 - (y. ksI0 )

I2 2- Yout 2  n B2 2  k

Y2  Y 2 2 (V, (DkOa)

y + Y2 2 .(v. kz0 )

1 I:no -JB 2 2' 1 2

1i 1t 2'
SI .

Figure D9. Network mustrating Evaluation of
S and S21 of the Parallel Matching Network

1I:n 0 JB 2 2 ' I 2

Y2,p
V+0

Figure D1O. Network Illustrating Evaluation of
S2 2 and S12 of the Parallel Matching Network

while S12 can be determined from the same figure following the procedure indi-

cated in the previous section or via a reciprocity relation, that is,

$12 Y2 (D2Tb)
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D5. S-PARAMETERS OF THE QUARTER-WAVELENGTH TRANSFORMER
MATCHING NETWORK

A matching network, shown in Figure DI. consists of a transmission line
with characteristic Impedance Zt and propagation constant 0t" The transmission
line length is At = t/4. The network is placed a distance £2 away from the dipole

so that the transformed gap impedance Z 2 2. at terminals (2 - 2*) is real. that is.

Im [Z2 2 *(V, kz 0 ; 2)] = 0 (D28)

where Z 2 2 . (P. kz0 ; A2) is given by Eq. (Dl5a).

2

Zl 'l Zt got z Z'2ZO
_,,I" /

0 0

L At/4+- _ L2

Figure DlI. Quarter-Wave Transformer Matching Network

From Eq. (D28). we obtain tie relation for A2.

2Z 2 Xg (P. kz0)
tg P2A2 2 •R2 (v. ko) + z2 2 (D29a)

g zO 2 Xg zO

where gap impedance

Z ( (.k R (, kz0) + jX (u, kz0) (D29b)

and characteristic impedance of transmission line 2 is

Z2 = Rg (v, kz0). (D29c)
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The characteristic impedance of )kt/4 transformer is then

z t = 1 Re[Z2 2 (10., kzo; A2)1 ()SOa)

and the propagation constant

Pt't a i" (D30b)
2

In the remaining part of this section, we determine the scattering parameters

for a section of transmission line of length £t and characteristic ituipedance Zt

shown in Figure D12.

0 ' -tP ! 'Z•P
v Ii

Figure D12. Quarter-Wavelengtll Transformer Matching
Network Illuettkating Evaluation of S-Parameters

Scattering parameters Si1 a'td S21 are tound with the help dt ki•ft DIS Ad

follow S:

We define reflection coefficients

Z2 - Zt
I-(z =t) = - = Zb ho

and

r(z = 0+) =r 2 e-J2#t t (b ib)

The impedance at the input port of the matiching niet*dtk is

1 + P(z = 0+)

Z (z = 0) Zt I - = 0o)
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V1-SI

.11

1 L 2

zzs0 zu0*

, 0O zu z Izo Zt~ z P

Figure D13. Network lflustrating Evaluation of
S•t and S21 of Quarter-Wave Transformer I2aching Network'

Consequently, we may write

vZ I z(z = o) - ZISl • (D33)vi• ~ Zz( = 0) + zI .V;-0

Substituting Eq. (D31a) Into Eq. (D31b). then Eq. (D31b)'into Eq. (D32). and

finally Eq. (D32) into Eq. (D33). we obtain '1
(Z2 - Zt)(Zt + Z1 ) e-j2pt t +(Zt-Z)lZ 2+zt) , A

S (Z 2 - Zt)(Zt Z1) eJ 2 ft4t + (Zt + Zl)(Z2 + Zt)

To find S2 1. which is defined as I
Vj

S21 + (D35a)

21 v~2

we first write the following relevant expression for the reflection coefficient at

Z(z = 0)- ZI
r'(z o 0) " I1 u (D35b)

Z(z • 0) + z
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For 0 < 2 4 Ate total voltage on the tranlmission line In

1V+(0+) /

At z u Its

V( t) V+(0+) + -JptAt (I +r(0+) ej2ptAt .

Substituting Eq. (D31b) into Eq. (D37). we have

V(At) V+(0+) e'j (I+

Furthermore, since

V(O0) + V(0") • V(0) (D39a)

we see that

V(O+) C V+(O+)(1 + r(0+)) (D39b)

and consequently, using Eqs. (D39a) and (D3 Ib) from Eq. (0l39b)

V +(0+).VOY():0 0
i+r(o+) 'I + '. eOJPpt-t D!) •

Here]

V(o) = V(o) V+(o") (1 + r) (foa)

which, after substituting Into Eq. (D39c). yields 
r

+(+ V v+ (0")(I + rl)
iZ0+ + e t2At .(1)40b)

1 + r 2 e
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Substi-tuting Eq. (D40b) into Eq. (D38), we obtain

VI(t) =-j2PtAt (DI41)
1+ /`2•

Usin

Vl t )a - "(= A t' (D42&)

one can therefore w~rtte

" 21=V+l(z = 0")1 = + r2 e~j•l D2) i

Finally, substituting Eq. (DS5b) for 1, into Eq. (D42b). we obtain

2Zt(I + r2) -JISAt521~~ ( "~~ D43)
2 1 Zt 1 + r j2 e J2Pt~tt) + Z1 (1 -2 Ptt) tt (D43

where r.2 is given by Eq. (D3la).

With the help of Figure D14. following the same procedure. one finds S22 and

S12* However' because of the symmetry of the matching network, one sees from -

Figures D13 and D14 that expressions for S22 can be deduced from Eq. (D34) by

interchanging subscripts 1 and 2. Thus.

Vj (Z - Zt)(Zt + Z2) • + t t -Z 2 )(Z I + Zt)
~22 +Zt .(D44)r3 + -j2ptAt+

V2  ( 1 -Zt)(Zt -Z 2 ) 0 + (Zt + Z2 )(Z1 + Zt)

Using a reciprocity relation, one can also write

Z I . -
"S12 (D45)

z2

where S2 1 is given by Eq. (D43).

6721I



Z,1 ,pz,~ ~ ',zlot :-.•v 2002

PI \ v_
0 a

Fiigurt D14. Network Muastring Evaluatiou of
Sd 5 a of Qumrter-Wave Trmufowmer
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Appenft

Asymtoti Exanekw ofZv.sc.&v~p

In tis ppedix wederie aympoti ezresiouxof ~m~nsx~b an

zvm~tna xnO) (2)(N.O) her Z&n,,(ua,* n00)is ivenby q. b) n I

ýA

In m(na- MnPO)J1Vm(MnPO) H (2m (xC p0 . (El)

For simplicity of notation, we write

of Xa (E2a)

'2 'Kn1 O (E2b)

V a 1'm (E2c)

where

* / 2  2 mMn<o (E2d)

In this view. Eq. (El) takes the form:
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Z&,(x 1 . x2) -jw(x) - - H&• (x2) Ela)

where

H (xS W JI, (x) - j YI (z). (EZb)

The asymptotic exwansions of Eq. (238) will be derived in all relevant regions with

respect to orders and arg•ents for both real and Imaginary ar'guenIv.

El. REAL ARGUMENTh

El. 1 Debye's Asymptotic Expansion for Large Orders

If x is fixed and positive and P is large and positive, then from Eqs. (9.3.7)0.

(9.3.8). and (9.3.9)7

vr2wxa, -tanha J
I I

Jyp W - / t e 'S (4sb)Y,(z,- =,u, a

where

I +I.8 a -tanha (41 =
1 1+ '/1 "f)|i

a -in (24d)
2 1- 1-T ,)"

"k- I (cotha

"uk (cotha)
By I1+ I l-I)k (E41)

k-I V
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in Zqa. MEe) and {(EM)

UO (t) * 1 (Esa)

3t - 5t3uI (t) 2 4ESb}1 4

$ (t) Sit2 - 462 t 4 + 385 t (ajc)
1152

u3 (t) 30375 t3 - 369603 t + 765765 t t - 425425 to (E5d)
414720

""4465125 t4- 94121676 t$+ 340922430 t 8 . 446185740 + 185B1725uI (t)I
4 398 13120

or In general

t

t -t (1 1t-Uk +- f(I mSt ),k (t) dLt (k-. 1, ) (Est)
8o

In terms of Beael's funbtion of ftrt kind Jp (z) W nd Neumann fUnctions.

Y (x). Z,(x1 . x2) can be writt e in the form

Zy~~xlo ~ r1)4V(3 (ZI)J 1, (x2 ) + JR, (XI) Y&I (11) Yv (x2)
iF;(x1 ) J2y2(

Jv (z1 ) Jv(x2 ) Y, (xI) - J& (zX) Y5 (x2 ) )
Mi*

where

Jy (x1 1
F (X 1 ) 1+ (E6)7
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Substaxtion of Eq. (EQ) iro ~Zq. (ES) yields

1P40 + $2
10,xi x2) fsJ2 - - 1 .*v4 Pi

+ Y11 Y2 *mu(20 1 -02) +i(.,-w(401 - 19) - ~l

yll Bia pii A

vib ii a1 OIJM fF39)I

F 1 C21) I Zb

In Eq. (ET), mibscripts 1 and 2 rotor to arr zent x, MW~ U:. respectively.

Similarly,, we may wwlt*

)H2~f ai~I.(. fy&22.
I Jr (It). Jr (x) - 4(m, Y (12) * 2jp (XI) jv, (X) yp (:1 )yl# (X2)

7(z1  4(12)Y z.j g(l

+,~'1' ci 4x2)Y~X1  2i4(91) Jv Ni) YI, (92) Jp(:1  a(i) Ye,(up
+ Yý (XI)

from where u*Weg Eq. (EQ,. the respective apuptqotic axpspion in '
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ZV(Z1 . 2  (~ 2) 0 i *4P8' 2 + is 472

"FIt VS1 B |Z)rwa"

2y 2

J2 (yl )2(..2, 4(2 . .Pill1 (0 + 02t)

"opl 24s

+ s* i -2V( 1 -P)J (E~b)
oJl

where F(AI) Is given by Eq. (ETh). Note that a, > e ine & in %I<

El. 2 -ifmitin Forms for Small Argmenaus

In this section, we evaluate ZV (z 1. z.) 392 ), (z 1. ZR) Hi)()r() when

x 1. Z. -, 0. The exprsions ame appoiiable for a4 zCi2  0. WO1.
Since

K k M (Ega)U

one sees that when

k

then t a. 0 and. consequently, as given by Eq. (E2a) and Eq. (Eftb). z z2 0.
We distinguish two limiting cases:

(a) v-00. x- 0

In this case. from Abramowitz and Stegun (p. 360). 7 when x -' 0

Jo(x)- I (E lOa)

2
Y 0 W- iR fn x (ElOb)

H 2 2(x) (EIOc)
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and theretore

I ~JO(zl) HTI(X 2 )
urnh Z (x1 ,8 2 a kOm 2)

I 1 - ~ k IAM00 a0.MG

In this case, from Abre Owu and e=7. (p. M). 2*essel .tntas or tien
first kW*d Neumana sr Hankel to I bmi can be expreassed In twerm at Gzamna
tuictiona (see Abramnowitz and Steplu. P. 255) as hMew:

J, W(0) (Ella)

H(2) (3t -j(ml)

Substitvilg Eq. (Eli) hto Eq. (MOa. we get

Z,(x z2) -m i(Wol

fVl(kPO I _ __a ,--d

We follow the same procedure to evaluate lim Z& (zl, z2) H M
Kih+

Namely.
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Using Eq. (Ell). vre hays

UYA Z*(3t. 3t) ff?(Z 2 ) -j -U A
l~Zz. 312

2 Zl&3aZ2 2 Aa a hpo
a ~An - j - li m a a

11.12*0 Z *a -*Iw k Luk-#yAa v-

2 ha&a k f 11's' a

UrnAzk w.TrIn (EMS

(b) ' a' 0. z-0

In Whs case, using Eq. (ElI) fro Eq. (MUa)

liz. Z(z 1 . 2~ ~ 1.~ 3*0 r(p +) o r(v +1)(II

2 JrI r+ 1) 6.01 k. '

r ~ ~ El + (Esa

r(~)a (vi)!(El~b)

r (P') _1(Else)

r(p +l)
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Ir ~( 1 x2 ) ) x 2) 2
V 1 x2 -O

E2. IMAGINARY ARGUMENTS

When k > k2 in Eq. (E2d), then

We set

Xj= I KrnP 0 (Rah

where x, and X2are real. Using Eqs. (9.8. 3) and 09.S.4

J1,(-jx) =e~ I O~x) at"~)

(2)2 .iHP (-jx) j e 2KP(x) M Iwo)

where Iv(xW and Kv (z) are Modified Bessel functiom, Z (2

2
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31r

where

- + (( 1)(I- 9) . - l)( - 25) + (E19c)8x 2! (8x)2 3 ! (8x)3 "E" i

*, 1 L+ PL-Ui 1• Ž + (P 1( M )(P +)(M25) (El19d) V

8z 2! (8x)2 31 (8x)3 ]
'and i

U=4v2M •9e)

Using Eq. (E19). we have

I V(xI) K I) sK-2 - -(2 -2x2 ) (E20)IV (x2)- -KV (x2) KV (x2) 1 s/ 2 " "---• 201
KV(, I) 22 %I

where again subscripts 1 and 2 are associated with arguments xl and x22 respec-.

tively.

E2. 2 Uniform Asymptotic Expansions for Large Orders ii

From Eqs. (9.7. 7) and (9. 7. 8)?

1 ec-u

2114 si (E21a)Ipx) 7 (1+x21/

e=~ - V171
Kv (x), e"(F2lb)

S+2)1/4 sk

where

+ Uk W
Si =1+(E2lc)

k=l V
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Sk = 1+ k ( ((t)4)
k=l k

When v ÷ + -, these expansions hold uniformly with respect to x in the vector

i arg x ( ff/2 - C . where f is an arbitrary poestive number. Here <1
vl+X

= +Z+ XU +An

+

and u (t) are given by Sq, (ES),

Using Eq. (E.21) to Eq. (E22)1 we can write

Skl 2
where

" " 1 -+4ri

2( 1 2

P2. 3 Limit$ag Forms fQr SF4aL Arcgments

Here we evaluate

Jim l1,(X2) - KV (x 2 K P (x2)

x1,120 Kx2"

where, again, we distinguish two cases:



(a) 0. *O 0.O
Using Eqs. (9. 6. 7) and (9.6S.8

I W -I1 (r.24a)

K 0 (xk'- -I.n x (E24b) j

one sees that.

An kP0 ? i
1izr~- ~ ' (-An kPO

A £rk a vir6 J I

ka. AnkP vf6d 2 1 ka
-An- urn (E24c) -

= kP0  An~ Aka 62 T kP0

(b) v'#0. x- 0

In this case, from Eqs. (9.6.7) and (9. 6. 9)

I~~(xM -25a)

r(v + 1)

1vx) rx M5b
2 2

and consequently

Urn '1(x) Kal K(x) Ka'(x)

2 2(~ 2 2

22v

l= - -- urn

2 2('1
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k /o ~b
lInn I~k Met) ,j 1 ~P0 J

2~k .4

21i
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Apenix
ElemetP, orn soý o

Thefarfild ueto -U~yozete elmet i a-= fthtemixt orra
4rz r

e~~~~~~~~~~~~~lement pattern Phase IntebodiergoCsotfe hntepa enrtf

Therefare fiein duearb to represeexcte te efar In &znatoh(tr. . atme4 tto thre ,

Denotinng tis giend by E#(0 (I .as . whr

R~ -r pi#cn (F2l

isthe dsac ewe h o phase reference point (pp at and.ta aa h ~iu fte~lidis

elementl pattervatioaseoin th broadsideregion wisotaiedwete asreev

Ito (r- sin Zcos rPh$i o (F21b)
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apd X# (r, * ) Is giveu by Eq. (F ). In Eq. (F2b). we fesumed that, so fir as

amplitude of the field is conernd. 1/ Iat I I/R.

Substitutlion of Eq. (Fl) Into Eq. (F2b) yields

O-Jkr
E(e) (Rr . (0) V*net (F3a)

ý4 1 -ph; v, inc r 
gj ph

where

(•e)(Ph, )=g(e)( 0 jPb sin@ con (

g, ph*0(p 0;0

and

,•)(P• (S, ) ,'),., #. ,SO
gj ph
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Element Pattern of an Axial Dipole in a Cylindrical
Phased Array, Part 2: Element Design

and Experiments

1. INTRODUCTION

This part describes the experimental effort and- presnts measured data that
strongly support the validfty of the theoretical model -over a meaningfully large
range of element and array parameters. These sxpeu#,ents are in support of the-oratical work presented preVI'00lyI (see 0* PCAr 1).

The.array construction Isa d.je don .tollowed by the design and
matching of the folded dipole radiator In, -i 3. %'i*meqtal amplituce ale-
ment patterns are presented In 8eatM 4 witesults superimposed,

showing good agreement in spte of the fact thatethi Oery addresses a simple di-
pole and the measurements were performed on a foted, dipole. Measurements
substantiating the theoretical results obtained for th •ment phase pattern are
discussed in Section 5. Array beam forming effects as briefly considered in
Section 6 along with polarisation purity. The influence of eipole feed line interac-
tions on the radiation pattern are pointed out.

(Received for publication 3 1 January 1984)
1. Herper. J. C., Hessel. A., and Tomasic, B. (1985) Element pattern of an

axial dipole in a cylindrical phased array. Part 1: Theory. Part 2: Element
design and experiments. IEEE Trans. Antennas Propag., AP-33.
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2. ARRAY DESCRIPTION

An experimental test bed was fabricated to Investigate the aidelobe and azi-

muth phase scan capabilities of cylindrical array antennas. This array was used
to measure the element patterns over a frequency range that exceeded the compo-
nent design bandwidth. The array is described in this section, including the feed

network and dipole geometry.
The array consists of 80 axial column networks covering a 150" arc of a cyl-

inder as shown In Figure 1. The diameter (2a) of the cylinder at the dipole ground
plane is 29 wavelengths (all dimensions, unless stated otherwise, are referenced
to the center frequency fc). The column networks extend approximately 15 wave-
length•s, with 22 axial dipoles spaced at 0.67 wavelength. This corresponds to an
elevation incipient endflre grating lobe angle of 246 at the high end of the * 6 per-
cent operating band for which the array had been designed. The column networks
are assembled into an array with a locally rectangular lattice having circumferen-
tial spacing of 0.5 wavelength at the high end of the frequency band. This spacing
was chosen to provide adequate suppression of the wide angle circumferential grat-

Figure 1. Cylindrical Array Test Bed Antenna
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Ing lobes characteristic of fully excited cylindrical arc arrays with large aperture

utilization.
2

The column networks are microwave printed circuits of two types. The first

type consists of 22 axially polarized folded dipole3 radiating elements, each fed by

a half-wavelength differential line length balun and matched to its own input line by

a multiple step transformer. Theme radiators are used to measure patterns in the
conventional manner on a far field range. The other type of column network incor-
porstes a microwave printed circuit that generates an axial Illumination taper func -

tion for low sidelobe patterns. This type of network, originally designed for the

array studies, is useful for measuring circumferential element patterns through
the &,ial beam peak by virtue of its increased isolation from ground reflections on
the measurement range. Also, increased line source gain over that of the single
dipole improves the measured signal-to-noise ratio permitting circumferential

patterns to be measured to large angles before becoming noise limited. The meas-

ured noise level of the single dipole element patterns is approximately 10dB poorer
than the noise of the column patterns, in good agreement with the gain improve-
ment. Except for the noise level, measurements with both types of networks for

the same conditions provided identical results.
The column networks utilize the folded dipoles and baluns discussed above,

fed by a 22:1 corporate power divider designed to produce a -35dB Taylor mumi-
nation using compensated Wilkinson couplers. The symmetric and four-port re-

sistive nature of these coupler makes them particularly useful. They provide a
uniform power split in amplitude and phase as a function of frequency, excellent

wideband match, and high isolation. Each of the dipoles and the column network

input is effectively isolated frf'm the mismatches created at other dipoles during
variations of scan and frequency. As a result, any dipole in the array sees an ex-
cellent feed match over all scan and frequency conditions. The printed circuits

are copper-clad Kapton, sandwiched between alumirn um ground planes using low di-

electric constant foam spacers. The response of the couplers and transmission

lin,-s is flat in amplitude and phase over the 12 percent operating band. Measure-
ments on the 80 column networks over the operating band showed rms phase and
amplitude tolerances of 2. 10 and 0.15 dB, respectively. A picture of the network

is shown in Figure 2 with the protective foam partially removed to display the di-

poles.

2. Hessel, A. (1972) Mutual coupling effects iri circular arrays on cylindrical
surfaces - aperture design implications and analysis, Phased Array Anten-
nas, Artech House, Dedham, Mass., p. 273.

3. Jasik, H. (1959) Antenna Engineering Handbook, McGraw-Hill. New York,
p. 3-13 to 3-l15.
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Figure 2. Column Network With

Protective Foam Partially Re-
moved Showing Dipole Radiators

& DIPOLE DESIGN

A folded dipole fed by a diffl line length balun was chosen because of itM

extensive use in planar arrays and good correlation to theoretical performance for

those applications. A previously used design was scaled to the desired operating

band. and the element was matched in a planar wavegulde simulator using both re-

flection and transmission measurements. An outline diagram of the radiator is

shown in Figure 3. The dipole is 0. 42 wavelength long and is located at 0. 24

wavelength above the cylindrical ground at center frequency. It is fed by a two-

wire line in the free space region and matched to two stripline conductors of the

same impedance. The balun is formed in this stripline by adding a half-wave-

length of line on one feed. The two lines are then reactively combined Into a 70%

characteristic impedance stripline used for the remainder of the printed circuitry.

As described by Jasik, 3 the folded dipole performs in a fashion similar to the

ordinary center-fed dipole with the folded lines providing an impedance trans-

former between the dipole and its feed line. The nearest to broadside ainle -

element, single-mode 451 H-plane simulator shown in Figure 4a was employed

for matching the dipole. The simulator was ezxcted at the end oppostte the dipole

with an orthogonal mode transducer. This provided a convenient means to meas-

ure and/or terminate the cross-polarized radiation. Also shown in Figure 4b is a

test dipole In its mating ground plane fixture. Figure 4c is a diagram of the ele-

ment lattice. For this configuration, the simulator heWht is the same as the
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l IO, PMUND PLANS

Figure 3. Outline Diagram of
Folded Dipole Radiator With
Stripline Food

axial dipole spacing and the simulator width to 50 potmb greater than the afrcum-

fereutial dipole spacing. The dipole it located one-thlrd the simulator width from

the left side wall. The simulator is emat toa an elemen" In a planar array. It ap-

proximates the active dipole impedance at the average scan In the arc excited for

broadside beam formation In a large cylindrical array. The resultin impedance

match over the* 6 percent design operating band Is shown in Figure 5. A voltage

standing-wave ratio (VSWR) of better than 1.3:1 was achieved over the operating

band.

4, MEASURED AMPLITUDE PATTERNS

Dipole element amplitude patterns were measured on a 675-ft antenna rane.

Extenaive measurements were performed in the * 6 percent design operating band.

Selected measurements were also made up to 30 perceut above the design operat-

lIg frequency. All measured dipole patterns correlated very well with the theo-

retically predicted performance.

The experimental data required somewhat modified computations compared to

those presented. First, since the experimental dipole is matched at WP in the
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Figure 4. Waveguide Simulator for 4?" H-Plane. 0.E-Plane Scan.(a) Suastor body with orthogonal moade tranadueer. (b) Test
dipole in fixture. (c) Relationship of array lattice to siraustor
size and location

E-plane and 4W In the H-plane, the theoretical data shown here were recomputed

to reflect this condition. In general, this effect causes a reflection mismatch of

about 0.5 dB at broadside, which flattens the central portion of the pattern out to

the match angle and slightly narrows the patterns for angles greater than the

match angle. The second change incorporuaed into the computer simulation arises

from the fact that. in the experiments, the physical dimensions are held constant
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Figure 5. Mesuured Dipole Jmpedesac In
Waveguide Simulator

while the frequency varies. This leeds to a sat of normalsed elemot and array

dimensions that increase linearly with the Impressed source frequency. Tables

are provided oan each patter indicating the nornsalised dimensions of the antenna

at the measurement ftrequecies. The symbols are defined in a UIs at the end of

this report.

The measured H-plame petterm at the center frequency (f - fe) is shown as the

solid curve in FIgure 6. This condition corresponds to a clrcumfereutial spacing

between dipoles of 0. 48 wavelength. The carve saows the element gan in dB nor-

m-lixed to that of the unit cell area versus the cicumfaerential field angle # meas-

ured from the element broadside as the abscissa. This is a principal H-plane col-

umn pattern (taken normal to the cylinder axls, that is. at G = 90'Wwth respect to

the cylinder axis). Measuremeats were terminated at -40 dB below the beam peak

(~ a *120' ) becau seof test and siteinstrmnentation noise limitations. Superim-

posed on this plot are theoretical points represented by dats. The excellent agree-
meat is evidett; this. in spite of the fact that the theoretical model employs a

suizple eirip dip0e of un-5 eUlls radaa licikue.., while Ube -ciual (olded dipule In
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printed on radial boards. The length L of the theoretical model was assumed
equal to that of the top arm of the folded dipole.

A similar set of data at a frequency 4 percent higher showing excellent corre-
lation between experiment and theory is shown in Figure 7. This result is of in-
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Figure 6. Measured and Theoretical Amplitude
Patterns at Center Frequency
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Figure 7. Amplitude Patterns 4 Percent Above
Center Frequency
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terest for comparison to slot data provided in the literature. 4 This frequency

provides an effective element spacing of 0. 50 wavelength. In contrast to a slot ar-
ray with this spacing, the dipole patterns show no discernible element pattern

ripples in the forward region. For further comments in this connection, see
Part 1 of this report.

Data for a circumferential element spacing of 0. 594 wavelength at f = 1. 2fc.

is shown in Figure 8. To acceituate the pattern ripple in the lit region, this graph

is plotted with the ordinate on a linear (voltage) scale, again normalized to the
unit call gain. Correlation of the experimental data (solid curve) witn the theory

(dots) is again remarkably good, especially since the test frequency is more than
20 percent above the center frequency at which the components were designed to

operate.
A series of measurements presented in Figure 9 shows the dipole pattern per-

formance parametrically at a number of conical cut angles relative to the cylinder
axis. These patterns are for polar angles 0 of 90f (Figure 9a), 80° (Figure 9b),

1.0

f = 1.226 fc
b = 0. 5 9 4 \,c

0.8 d 0.825X ,A
L 0. 5 0 9 Xc

I- s 0.2 9 8Xc
"w = 0.069,\cO ,•.h =0.004 Nc

0.6 ka 112.2

A 0

Z 04

00

0.2 MEASUREMENT S

so..THEORYI00 20 40 60 so 100 120
CIRCUMFERENTIAL ANGLE (DEG)

Figure 8. Amplitlide Patterns 22. 6 Per-cent
Above Center Frequency

4. Sureau, J. C.,* and Hessel, A. (1971) Element pattern for circular arrays of
waveguide-fed axial slits on large conducting cylinders, IEEE Trans. An-
tennas Propag. AP-19:64-76.
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Figure 9. Amplitude Patterns at Various
Elevation Angles. (a) V O". (b) W =10'

70' (Figure 9c), and 60' (Figure 9d). In contrast to the previous patterns, which

were column patterns, these element patterns are of lower absolute gain by about

10 OB and are thus affected by measurement system noise at a 10dB higher level.

PeE k gain decreases with elevation angle at nearly a cosine voltage pattern as ex-

pected for an E-plAne dipole scan when both the unit cell directivity and scan mrs-
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Figure 9 (cont.). Amplitude Patterns at Various
Elevation Angles. (c) = 20T. (d) * 30(

match gain loss are included. The patterns show a. general circumferential broad-

ening with increasing elevation scan. As indicated by the superimposed dots, the

actual performance is very close to the theoretically predicted performance.
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5. PHASE PERFORMANCE

In Part 1 of this report, the phase response of the dipole was' found to be flat

to within a few degrees ovei a large portion of the lit region when Cte phase refer-

ence distance from the ground plane is taken about 80 percent of the distance from

the ground to the dipole strip. Instead of measuring the element phase directly, a

rather difficult undertaking on a far-field range, an indirect focusing measure-

ment was performed.
The focusing experiment consists of the following tasks. A convenient illurni-

nation function is impreesed on the array. Far-field patterns are measured as

the element phase excitation is varied by incrementing the apparent radius of the

cylindrical array illumination. This simulates the variation of the dipole phase

center location. An error in the phase center location impresses a quadr'atic

phase error on the array collimation which, in turn. manifests itself as pattern

defocusing. From a practical viewpoint, approximately the same results may be

obtained more easily by varying the test frequency without readjusting the array

collimation. This effectively simulates the desired collimation variation.

The experiment begins with the radius set to the actual dipole location. Asa

the radius (equivalent dipole radial distance) is reduced, the nulls of the close-in

sidelobes incriase in depth. indicating an Improvement in the array focusing.

For a radius corresponding to 70 percent of the distance from the ground plane to

the dipole, these nulls reach maximum depth. Null depths at this point are about

15adB better than at the beginning of the experiment. Further reduction of the ra**

dius only degrades the null depths, confirming that the optimum location has been
exceeded. These measured results are shown graphically in Figure 10.

The theoretically predicted phase center location thus agrees very well with

the results of the focusing measurement. This go~od focus held over a * 6 percent

test bane and with circumferential phase s an of the array. ThqS agreement withA

theory is further accentuated since the folded dipole feed employed in the meas-

urements can be expected to have a slightly different phase center location than

the flat strip dipole investigated in the theory.

6. ARRAY BEAM FORMING CONSIDERATIONS

An important effect in cylindrical arrays is the formation of residual delete-

rious grating lobes. This effect is caused by the edge subarrays of the aperture,
which need to be given large progressive phase delays to collimate the beam and

which have large enough spacing to generate a grating lobe. Using the precise

element pattterns generated by the methods described in Part 1, the grating lobes
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Figure 10. Location of Dipole Phase Center

can be accurately predicted. These lobes generally occur at azimuth angles

greater than 90* from broadside, may have large amplitude compared with the de-

sired sidelobe levels, and are usually very broad in angular extent. These effects

are demonstrated in the literature. 2. 6 The on.j. design tool effective in con-

trolling these grating lob as is the reduction of the circumferential spacing between

the elements of the array. Figure 11 shows the result of a parametric study of

this effect. A cylinder of constant radius (ka = 140) is considered, and the grating

lobe level is plotted versus circumferential element spacing. A 120 sector of the

array is assumed to be excited with a low sidelobe illumination at broadside and

15" circumferential phase scan, which corresponds to 750 scan for the edge ele-

ment. When the beam is broadside to the excited aperture, the far out sidelobes

computed in the region where the grating lobe appears approached -70dB for close

element spacings. For element spacing near 0. 50 wavelength, the residual grat-

ing lobe level generated is negligible. As the element spacing approaches 0.60

wavelength, lobes well above -40 dB (relative to the main beam) are produced.

For many applications, such grating lobe levels would be unacceptable.

Another deleterious mutual coupling and curvature effect, discussed in Part 1

of this report, results from the behavior of the element pattern as a function of

element spacing. At element circumferential spacings corresponding to 0. 5 wave-

5. Sureau, J. C. . and Hessel, A. (1972) Realized gain function for a cylindrical
array of open-ended waveguides, Phased Array Antennas, Artech House,
Dedham, Mass., p. 315.

6. Provencher, J. H. (1972) Conformal arrays on surfaces with rotationi, sym-
metry, Phased Array Antennas, Artech House, Dedham, Mass., p. 301.
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Figure 11. Grating Lobe Level of a Low Sidelobe
Pattern Excited by a 120" Cyl-:ndrical Array Arc

length, a smooth dipole pattern is observed. For spacings greater than this, a

ripple. du3 to creeping waves propagating around the cylinder, appears in the
broadside region of the element pattern. In a cylindrical array, this ripple can

act like a periodic error across the array, and, at some frequencies. may lead to
the generation of anomalies in the near-in array sidelobes. Indeed, element rip-
plk levels of a few tenths of a dB peak-to-peak, could cause sidelobe peaks on the
order of -40 dB below the array beam peak. '. rns effect on the sidelobe level is

generally ditfi~.ult to predict because it depends on the proper correlation of the

periodicity of the element pattern ripple with the effective element spacing, each
of which depends on frequency. Many frequency patterns must be evaluated to

guarantee suppression of this effect to acceptable levels. If measured patterns

are employed to predict array performance, care must be exercised in separating

the actual ripples obtained on a full cylindrical ar'ray, fromn those caused by exper-

imental anomalies such as range multipath or edge effects due to finite subirray

test units.
It is also useful to compare the dipole performance with that of a slot radia-

tor. 4For' equivalent site cylinders and element spacings, the dipole has consid-

erably less pattern ripple than the slot. This is attributed to the imaging property
of the dipole above its ground (see Part 1 of thie report). Also, the dipole has a

slightly broader pattern due to the weaker grating lobe effect as compared to the
slot. These features may favor the dipole in array designs that utilize significant

portions of a cylindrical arc or where low sidelobes are desired.

As discussed in Part 1 of this report, the longitudinal current approximation
for the axial strip dipole does not predict any circumferential far E-field. Array
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pattern measurements confirm this analysis. The cross-polarization was meas-
ured over a large region about the beam in the circumferential, axial, and skew
planes. The cross-polarization level was everywhere better than 10dB below the
corresponding co-polarization level at the same angle and was generally as good

as the cross-polarized level of the site transmit dish. Thus, no experimental evi-
dence exists for coupling to the cross-polarized radiation within the measurement

region. This indicates that other structures such as the feed lines and the folded
feed that could couple to the cross-polarized radiation generate no significant cir-
cumferential electric field.

It has been noted in the literature that, under certain circumstances, the di-

pole feed lines can resonate with the dipole to form pattern blind spots in the E-
plane. 7. 8 Data and discussion of this effect are scanty, difficult to obtain, and
often limited to verbal presentations. Pattern data in the axial (E) plane were
limited to 30' because of turntable loading considerations. No resonance effects

were encountered out to this point.

7. CONCLUSION

The measured results for the element pattern of an axial dipole element in a

cylindrical phased array lead us to the following conclusions:
1. The modal analysis developed in Part 1 of this report agrees very well

with the measured data indicating that the method and the numerical results are
very accurate.

2. The assumption that the feed lines have little effect is justified. For the

scans and frequencies investigated, no differences were discernible between the
theory (no feed modeled) and the experiments with the folded end-fed dipole and
two-wire-line feed.

3. A high polarization purity and wide bandwidth dipole and feed are achiev-

able.
4. The accurate knowledge of element pattern amplitude and phase afforded

by this method makes possible the precise prediction of cylindrical array perfor-

mance over a full 360' azimuth range.

7. Reale, J.D. (1974) PAR hardened cross-dipole array (U), in 20th Ann. Tnri-
Service Rladar Symposium, p. 351.

8. Ilerper, J.C., Esposito. F.J., Rothenberg. C., and Hessel, A. (1977)
Surface resonances in a radome covered dipole array. 1977 International
Syposium Antennas Propag. Digest, p. 198.
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--------

Nomenclature

0 Polar angle measured from the cylinder axis

* Circumferential angle measured from element broadside
=(90W - 0) - Elevation anglo measured from normal to axis

00,0~0 Beam pointing direction for active phased array
ka Array circumference

b Circumferential element spacing
d Axial element spacing
L Dipole length

s Dipole spacing from cylindrical ground
INV Dipole width

h Dipole feed gap
N Number of dipoles in each ring (192)

f Operating frequency

fe Design center frequency

NOTE: All. lengths in wavelengths at the test frequency.
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